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STATEMENT OF PROBLEM STUDIED 

In general, the central problem to be overcome is to find better materi- 
als. For a wide spectrum of technologies the main bottleneck is that current 
materials fall short of desired performance goals. While design, control and 
processing are all important in reaching these goals, the main issue is the 
materials themselves. The specific goal of this research is to give strategies 
for improving shape memory and magnetostrictive materials based on reli- 
able mathematical models, studied via modern computational methods. The 
improvements are aimed at actuator applications. 

The main opportunity to be seized at this time in the study of materials 
is the behavior and synthesis of materials at small scales. The emerging near- 
term route is thin films. It is becoming possible to synthesize many small 
scale devices on a wafer using integrated circuit technology. The field is now 
entirely driven by experiment; new methods are tried that are experimental 
extensions of what worked previously. Mathematical modeling and compu- 
tation have an important role to play in this area, by predicting beforehand 
what properties are expected and by providing optimal designs. There is real 
chance for new discoveries here, as thin films behave entirely differently from 
bulk materials. 

Our theoretical research has led to the prediction of a new type of ma- 
terial, that combines the shape memory and magnetostrictive effects. We 
have termed such a material a "magneto-memory" material. We have given 
a strategy for finding such a material, based on 1) arranging a martensitic 
transformation to be near a ferromagnetic transition, and 2) adjusting the 
lattice parameters of the material to satisfy "special relations" that pro- 
mote desirable domain structures for microstructural rearrangements. This 
new material is predicted to have magneto-elastic strains that are more than 



an order of magnitude larger than current giant magnetostrictive materials. 
This strategy is now being implemented by Wuttig and James. 

There are two main puzzles in the mathematical modeling of active ma- 
terials, that directly affect actuator applications. They are the related topics 
of hysteresis and kinetics. A new model of the kinetics of transformation be- 
tween two variants of martensite has been given, based on a "wiggly energy" 
concept (see below). This shows good agreement with experiment, for a 
wide variety of different experiments: inner and outer hysteresis loops, creep 
tests, and various far from equilibrium tests. More importantly, it gives an 
understanding of the origins of hysteresis in terms of microstructure. 

The main potential payoff is new materials for ARO applications. We aim 
for very specific strategies to be used for the improvement of materials, and 
explicit mathematical models. We do not do phenomenological modeling; the 
models we develop are based on fundamental transformation properties, such 
as lattice parameters, crystallographic symmetries, latent heat, saturation 
magnetization, etc. The reason for this approach is that the mathematical 
and computational models can then be used in the direct design of materials, 
by asking the question (as we do) of how do the predictions change when 
the fundamental properties change. More importantly, we look for special 
properties that give unusual or optimal behavior. 

Since this research gives such explicit predictions, it entails a certain 
amount of risk. The predictions are periodically checked by direct comparison 
with experiment (currently by Tickle, Wuttig, De Graef). 

SUMMARY OF MOST IMPORTANT RESULTS 

Our theoretical research has led to the prediction of a new type of ma- 
terial, that combines the shape memory and magnetostrictive effects. We 
have termed such a material a "magneto-memory" material. We have given 
a strategy for finding such a material, based on 1) arranging a martensitic 
transformation to be near a ferromagnetic transition, and 2) adjusting the 
lattice parameters of the material to satisfy "special relations" that promote 
desirable domain structures for microstructural rearrangements. This new 
material is predicted to have magneto-elastic strains that are more than an 
order of magnitude larger than current giant magnetostrictive materials. This 
strategy is now being implemented by Wuttig and James. The existence of 



such a material became clear after studies of giant magnetostriction [18] 
There are two main puzzles in the mathematical modeling of active mate- 

rials, that directly affect actuator applications. They are the related topics of 
hysteresis and kinetics. Relying on the experiments of Chu [10], Abeyaratne, 
Chu and James [2, 1] have been led to model the kinetics and hysteresis in a 
Cu-Al-Ni shape memory alloy by a new "wiggly energy" concept: many little 
wiggles are superimposed on the energy to reflect small scale microstructural 
changes. In this alloy the wiggles are due to the presence of thousands of 
tiny needles in the specimen [20], and the passage out of a local minimum 
corresponds to a tip splitting event. The predictions show good agreement 
with experiment, for a wide variety of different experiments: inner and outer 
hysteresis loops, creep tests, and various far from equilibrium tests. More 
importantly, the model gives an understanding of the origins of hysteresis 
in terms of microstructure. The idea has been extended to the analysis of 
the friction between clean surfaces [24], giving a model that explicitly relates 
the surface roughness to static friction (The authors are currently trying to 
predict roughness profiles that minimize or maximize friction; they also have 
set up a simple experimental program to measure the surface roughness of 
various surfaces by the atomic force microscope and then to compare the 
predictions of theory with measurements of macroscopic static friction). 

Together with G. Gioia [13] and K. Bhattacharya [9], James has recently 
been trying some thin film calculations. By scaling a film thinner and thinner, 
it is found there is a mismatch of terms of the energy: certain terms are much 
larger than others. This can be used as the basis of a rigorous asymptotic 
argument giving a general limiting thin film theory. We have tried out this 
kind of argument for micromagnetic and martensitic energies. The results 
look to be extremely useful for predicting the behavior of this films, and 
point to major advantages of epitaxy. 

Luskin gave the first analysis of the approximation of martensitic mi- 
crostructure for a physically realistic, multi-dimensional crystalline energy 
[30, 31]. He developed this analysis for the orthorhombic to monoclinic 
(double well) transformation [31] and then extended the analysis with his 
graduate student, Bo Li, to the cubic to tetragonal (triple well) transforma- 
tion [29]. He applied the approximation theory developed in his analysis of 
microstructure to obtain error estimates for the numerical approximation of 
microstructure by the finite element method. This analysis gives a theoreti- 
cal basis for the computational projects described in the proposal and should 
make possible the development of more effective and reliable algorithms. 



Luskin and his post-doc, Peter Kloucek, have developed methods and a 
code to investigate fully three-dimensional dynamical phenomena associated 
with the propagation of the interface separating the martensitic and the 
austenitic phase in some indium-thallium shape-memory alloys [27, 28]. This 
dynamical problem is extremely challenging since the multi-well structure of 
the energy density leads to an ill-posed problem (in the absence of surface 
stress ai-d viscous stress) for the linearized momentum equation about some 
strains. They have been able to develop stable time-discretization methods 
and efficient techniques for the solution of the linear equations at each time 
step even though the energy density is non-convex. 

The computational experiments of Luskin and Kloucek have simulated 
the development of martensitic microstructure and the propagation of the 
austenitic-martensitic phase boundary which separates the homogeneous 
austenitic phase from the microstructured martensitic phase. They have also 
done computational studies of the effects of surface stress and viscous stress 
on the dynamics. In [26], Kloucek, Li, and Luskin have given an analysis of 
a nonconforming finite element method which has been used successfully to 
compute the dynamics of the martensitic transformation [27]. 

Luskin and his graduate student Bo Li have developed a numerical model 
for the simulation of the biaxial experiments of Chu described in [10, 5, 11]. 

In some shape memory alloys certain atomic scale relaxation effects take 
place that significantly affect long term performance. It is particularly preva- 
lent in the Cu-based materials, and in several cases makes unusuable oth- 
erwise good shape memory alloys. A new nonlinear dynamic model of this 
relaxation was given [8]. It shows excellent agreement with experimental 
measurements of the slow evolution of hysteresis loops, and the long-time 
"creep" of transformation temperature. 

New methods for analyzing microstructure have been given, following our 
earlier work [3, 7]. 
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